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XIV. On the Convergence of Infinite Series of Analytic Functicns.
By H. A. Wess, B.4., Fellow of Trinity College, Cambridge.

Communacated by Professor A. R. Forsyrs, Se.D., LL.D., F.R.S.
Received November 10,—Read November 24, 1904.

IN the first section of the following work an attempt is made to deal with the
convergence of infinite series of functions defined by linear differential equations of
the second order from the most general point of view. Functions of Lam¥, BESSEL
and LEGENDRE are considered as examples. In the second section the results
obtained are applied to the expansion of an arbitrary uniform analytic function of z in
2 geries of hypergeometric functions, and the expansion is shown to be valid if the
function is regular within a certain ellipse in the z-plane. An expansion in a series
of LEGENDRE'S associated functions is deduced by a transformation. The method has
been applied by the writer to other cases, but the foregoing offer adequate illustration
of the general theory.

SecTiON I.—GENERAL THEOREMS.

§ 1. Theorem I.—Consider the differential equation

dQ
—J;%-{-]ny =0 e . . . . . . (1)a

where _
Q= Q0+%+%§+-- ;

k is a large constant, ,/Qy Qi Q... are analytic functions of 2, independent of £,
without singularities or branch-points so long as z lies within a given simply-
connected region S in the z-plane, though ,/Q,, Qi, Qz... may have singularities on the
boundary of S; and the series defining Q converges if |k| >R, so long as 2 is in the
region S.

Let z = @ be a point within S.
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482 MR. H. A. WEBB ON THE CONVERGENCE OF

Consider the particular integral of (1) defined, when z = a, by

o o
y = oc0+L—j+]—c§+...,

dy _ ,8 ,8
=k L
(,L« <180 >a
where « and B8 are constants, and both series converge if' [k >IR.
The expression
oy = o ‘/’1 (}S 1 7
y=e (qb,,+ —l-/z ad .

tom M<¢, s adinf). @)
where w, ¢, ¥ are functions of z independent of &, which can be constructed as a formal
representation of this integral, is for values of £ such that |[£| >R, and for values of
z within the region S, a convergent series and consequently a true representation of
the integral considered.
Further, when £ is very large,

eikw 4)0 + e_mw\llo

is an approximate value of the integral, whether the integral and the approximate
value increase indefinitely with % or not. '
This proposition has been proved by Horx* for functions of a real variable 2 ; the
proof for functions of a complex variable is similar ; a brief outline is as follows :—
Let v, = "¢y, vy = e™"y;, be two independent integrals of the equation

Y Qy = 0

dz?
Write
w oW u
v, v, v
/ /4
: Ve Ve W
D (U;) E 2 2 ; 2
v, v,
vy Wy
Then
W +1Qu = D (u)+E (u),
where

E(u) = % w + T,
S and T being functions of z and £, developable in convergent series of powers of &7,

if k| >R,
* ¢ Mathematische Annalen,” vol. 52, p. 345 (1899),
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INFINITE SERIES OF ANALYTIC FUNCTIONS. 483
It, then, we integrate the equations

D (u,) = 0,
D(uw,)+E(t,-) =0 (m=1,2..),

with the initial conditions

\
240—& +—];+ ’[?’U___]C<BU+%+...>,
i = 0, @,=0 (m=1,2..),
we shall have
Y = U+ U+ UsF .,

provided this series converges.
We find that

e __e”‘""cﬁog ity B (1) dz
" 2k ) Po— P
o' oo Tk

e“’”“’\p S e’ bl (u,,,) dz

21k ’ __4)04‘0 0‘1’0
a Wb 2uk

the integrals being taken along any finite path within the region S.
Tt can be proved by induction that either |e¢*u,,| or |e™#

Uy,

Mzm+1 2 —Cb ‘ m
(21")’” T oml

. (1 + 3721.)’

¢~™| is greater or less than unity; where M is a finite real positive
quantity, independent of £.
Hence the series

y = u0+/LL1+UQ+

when multiplied by either e” or ¢™#, according to the value of arg (kw), is absolutely
and uniformly convergent for all values of & such that |£|>R.
§ 2. A slight change of notation is convenient. Consider the equation

d!
d4+p,,()y=0 T ) 8

where n is a positive integer, p, (2) is expansible in the series
r 1 r
n ﬁ,(z)+;0;jl(z)+... ,

arranged in descending powers of n and convergent if z is confined to a finite simply-
3 Q2
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484 MR. H. A. WEBB ON THE CONVERGENCE OF

connected area C in the z-plane, within which g, (2) is regular, though p, (z) may have
suwularltles on the boundary of C.
7 is a positive quantity, and v/7; () as well as f, (z) must be regular within C.
Then the approximate value of any solution of the equation ( 3) for large values
of n is
y = A (2). einifja/]o'(z—).dz_l_Az\pz (2). oV s (),

where A, and A, are arbitrary constants, and y, (), ¥ (2), are functions of z that
remain finite as n increases indefinitely.

This follows from Theorem I.

Unless p, (2) possesses a line of singularities everywhere dense, forming a closed
curve, the result holds for all values of z except the singularities and branch-points
of p, (2).

Denote the solutions whose approximate values are

¢1 (z) einérj \/m.dz al].d 1}12 (z) ) G_ini'l“[ ‘/m.dz
by

Pa(z) and g, (2).
Denote

eiij.dz by H(z)
Theorem II.—The series

F (, t)_.Ecnp (). qu(®. . . . . . . . . (5)

n=1

the ¢’s being arbitrary save for the condition that the series X ¢,2* has unit radius of

n=1
convergence, is or is not absolutely convergent according as |€(x)| is less than or is
greater than |6 (¢)].

If |6 (x)|=]0(¢)|, F(x, ¢) converges or diverges according as s, converges or
n=1

diverges.
For the n'* term of the series (5) is approximately equal to

A7

SACRACR [

of which the modulus is -

)01 x ol {561
whence the result.

The examination of some special equations will illustrate Theorems I. and I1.
§ 3. For LAME'S equation

;%‘1 n(n+1)ksnz+B. . . . . . . . . (6),
+1k !’ snz.dz = Fulog (dnz+kenz),
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INFINITE SERIES OF ANALYTIC FUNCTIONS. 485
and the general solution of Lam#’s equation for large values of » is approximately
sn~¥2[C, (dnz+ kenz) i+ Cy(dne+kenz)™ ¥, . . . . . (7),

where C, and C, aré arbitrary constants.
-In the notation of BYERLY*

E,?(snz) = Cisn™#2(dnz+kenz)**4
and
F.7(snz) = Csn#z(dnz+kenz) ™

approximately, for large values of n, where

B=p(1+F).
Hence the series
S ¢, B2 (snx) . F,?(snt)
n=1

corresponding to LAME'S equation converges if

| dnx + kenx | < | dné+kent|.
Write
x=E+m, t=§+in
The condition reduces to

dn(&, k). du(y, &) _dn(&,k).dn(n, &)
en(§, k) < en (&, k) e (8

§ 4. The equation of the elliptic cylinder

tdy )
?;;l—qg;-—n(n—kl)cosdﬂrB Coe (9)

is, in the notation of HEINE,T satisfied by the functions
1 En((b) and F”((b)'
When n is large, -
E"((I)) = 01 \/SGC d) | entdsing

and |
F,(¢) = C, V/sec ¢ . e~®*Dsin¢ approximately.
Hence the series

S ,E.(z). F. (1)
n=1 !
corresponding to the equation of the elliptic cylinder converges if
{ 6xain z—sint I < 1.

* ¢‘Fourier’s Series and Spherical Ilarmonics,” p. 255.
+ ¢Kugelfunctionen,’ 2nd edition, p. 404.
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486 MR. H. A. WEBB ON THE CONVERGENCE OF

Let

- z=§+m, =&+
The condition is that

sin § coshp <sin&coshyy o . . . . . . . (10).
§ 5. The equation '

(1— Z)Cfly dy+{(n+a>(n+a+1)-’(n'{ﬁﬂ‘)z}y=O SRR

lz 1—2°
is satisfied by LEGENDRE'S associated functions

an—-n—g(z) and Q—7z—a—1n+ﬂ(z)»
We find that when # is a large positive integer

Qn*_a-—n B(z) = ¢ (n+ﬁ))mn(o‘ B) 7T n—a——lz—aﬂ%—l(l__z2)—.’ln-%[3

II (n +a+i )
and
H (B — o — ]_ ) — Lyl
n+p >t p) fmt nto.o—p —22)int+iB
Q_n_a_l (2)=¢ (—n—as]) Z 2P (1=2%)
approximately.
‘Whence

Qa1 (2) Qui ™ P (t) = (=1) f.n-'sin( %)) %<_)a B<1__w2>%n+%p‘

2n+20+1  sin(a— 1—¢
Accordingly the series

Ec,,Qﬁ,,_a 1’&‘*(90) Quea " 7P(t). . . . . . . . (12)

converges if

1= <|1—2]
and diverges if

|1—a®| > |1—=27|;
the ¢’s being arbitrary except that the power series gc 2* has unit radius of

g Y p P .
n=1 ‘
convergence.
If
1= =|1—¢],

the convergence depends on the values of the ¢’s; we shall exclude this case.

Let ' _
=&+, t=E&+m.

1—a| <12,
(E+7 Y =2(E—n") <(&2+m®) =2 (&)

Now let us choose the ¢’s according to the following law. Unless n 1s an integral

if

power of 8, ¢, = 0; 11

0= 3m’ (;n — ("'"].)?n )
2m+1
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INFINITE SERIES OF ANALYTIC FUNCTIONS. 487

For the series
( — l)n 3’;3“
a=12n+ 1

Ms

>

the circle of convergence is a cut, and the function defined by the series is regular
within the circle, but has a line of singularities round the circle that are everywhere
dense,.

Hence the series

§stf“"“%(li).ngn-ﬁ"*%(w). Y ¢ £

n=1

defines a function that is regular within the two loops of the oval of C'assINT
(& enP=2(E—7) +13] = 0

where x = &+17, which has singularities everywhere dense round the two loops, and
which consequently cannot be continued across the boundary of either of the loops.

Hence we have constructed an analytic function that exists within two separate
regions, is the same function in both regions, but cannot be analytically continued
from one region into the other.

§ 6. Consider the equation

2,
%%/:p?n‘gyz?p*z. e s (1,

which is satisfied by the Bessel functions
Z%Ji(gp)—l (inzp).

n is a positive integer, p is real, and the cases p = 0 and (2p)™" an integer are
excluded.
Take as the standard solutions

Pule) = i {5 T (i) —c. T 1 (ina")}

and
0(2) = 22 {ein. J_L (inz?)—e"55. T 1 (in2?) }.

L
2p 2p

From the asymptotic expansions of the Bessel functioné, or from Theorem L., we
find that when n is large

= 2 gn T e e
pal2) = s 2T e
and
2 1—1 -nz?
0a(2) = A/ ——.sin — . 27 e
nir 2p
approximately.
Hence the series of Bessel functions
w
3 cpa() (1),
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488 MR. H. A, WEBB ON THE CONVERGENCE OF

@
where the ¢’s are arbitrary, save that the series S ¢,2" has unit radius of convergence,
n=1

converges if
|| < 1.

To interpret this condition geometrically, let

€r = ,}aei{l, t — pe’ia,
and the condition reduces to
rPeospl < pPeospe . . . . . . . . . (15).

§ 7. *If we are given any finite simply-connected plane area whose boundary either
is an analytic curve or is made up of portions of a finite number of analytic curves,
the interior can be conformally represented by the interior of a circle, any given point
corresponding to the centre of the circle, and the equation of the boundary can be
expressed in Cartesian co-ordinates (€, %) in the form [6(z)| = constant, where
z = £+in, and 6(2) is a uniform analytic function of z.

The following is a converse of Theorem I1I.

Theorem I11.—W'e can construct a series, F(x, ¢), which converges if x lie within
the area bounded by |0(z)| = |8(¢)|, but not if z lie outside the area.

Points lying on the boundary of the area are excluded.

F(m’t)zé,c”ﬁ(w)g"(t)' B ()8

@
where ¢, ¢,...c, .. are arbitrary, save for the restriction that = c¢,2* bas unit radius of

n=1
convergence, and f,(z), ¢.(z) are solutions of the linear differential equation of the
second order

Py _1_d6<z>]2 1 |-
dz2+ny{ [6(2) T +nufl(z)+... =0 . . . . . (17),

where 7, o are real positive constants, independent of n, fi(2), fa(2)... are functions of z
regular within the curve |0(z)| = |6(¢)|, and the series in the bracket is arranged in
descending powers of % and is convergent when » is large.

§ 8. Theorem IV.—Let ¢ (2) be a solution of the linear differential equation of the
™ order

ln _ n—1,

(to+ a2+ ... +0,2") le%{+(bo+blz+ et 0,2 )
byt ) Yl = 0. 18
+o+( 0ﬂtclz)zzeroy_O. N € £33 )

the coeflicient of d"y/dz" being a polynomial in z of order 7.

* ForsyTH, ‘Theory of Functions,” 2nd edition, chapter XX.
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Then
1o =[2%a,

taken along a suitable path, satisfies the equation (18), and there are in general n—1

(\

such integrals, linearly independent.

For
df(z) _ n’{ ( ¢ (1) dt

dz" o(t—2)*!

— (f——/)
on integrating by parts, where ¢ () denotes d"¢ ()/dt".

et (), 600, b
n-—lt d)n2
hie ) =B B0 -y

Substitute in the left side of (18), and subtract the zero quantity

f—z

<[ B0 [E2OL 2O,y 2O

jtl [ttt 4 oo ) G (8) 4 oo+ lup ()}

and the expression becomes the integral of a perfect differential.
Hence

76 =[20q
satisfies the equation (18), provided that
(o+tz+ oo+ a2 P, (2, )+ oo+ (kg + ) P (2, 8)
+{(an+. a2 ) POV () + (et ozt o a2 [Lh TV () — 2 (2)]
ot a, [T () —(n—=1) T2 () 4+ (= 1) (n= 1)1 D ()]}

+...
k() o o (19)

has the same value at the beginning and the end of the path.
Let the roots of the equation

O+ 2+ .. a2 = 0,

supposed all different, be denoted by

The points

ENY
I
>

g
N
!
>

¥

Z
VOL, CCIV,—A, 3 R


http://rsta.royalsocietypublishing.org/

\

\

Py
/\
-
A

THE ROYAL |

PHILOSOPHICAL
TRANSACTIONS

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

SOCIETY

OF

A
s

A

/J
A

OF

Downloaded from rsta.royalsocietypublishing.org

490 MR. H. A. WEBB ON THE CONVERGENCE OF
are the only possible singularities or branch-points of ¢(z) and its derivates, and sc
t=N..t=X\, t=o and =z,

are the only possible singularities or branch-points of the expression (19).
Hence, if we take a “ Doppelumlauf” round two of the points

=Ny b= Ay b= M,

we have a contour satisfying the condition. There are in general n—1 independent
contours of this kind, which, together with ¢(z), which is given by a simple contour
round ¢ = z, form a complete set of integrals of the equation (18).

Some of the contours may become evanescent, either because the equation

g+t Z24 ...+ @,2" =

‘has equal roots, or because

2= N, 2= Ay .2 o= A,

z

are not all singularities or branch-points of ¢(z). In that case the method does not
yield a complete set of integrals. In special cases a contour may reduce to a straight
path connecting two singularities.

§ 9. The theorem has been proved for the special case of the hypergeometric
equation in a posthumous paper of JAcoBL* ‘

The result is of importance in the expansion of (¢t—x)~
geometric functions.

JAcoBr proves further that if » is a positive integer

'in a series of hyper-

— ; — ﬂl:.ll_ 1=v(1— ~2°_CE_ nty=1(1 __ p\ntp—y
F(—n, p+n,y, x) = II(n—}—y—-l)sc (1—z) dw"{w (1—x) Fo. (20),
from which it follows after integration by parts that if the real parts of y+n and
p—y+n+1 are positive,
(1 —2)P™
fl‘j_(.___l i F(—=n, p+n, vy, z)dz

0 72—t

_ (e L) T (y =D (p—y+n) < ol L 01
= (—t) {p+2n) Fla+1, y+u, p+2n-+1, t)' . (21).

§ 10. Theorem V.—Consider the equations

0, (z)_(l°u+ 6, (z) iZZ’Jraﬁg(z)u =0,
and

6,() 204 0,() %% 4 BO,(2)v = 0,

fdt et

* «Untersuchungen iiber die Differentialgleichungen der hypergeometrischen Reihe,” ¢Crelle,” vol. 56,
See also Jaconr’s ¢ Gesammelte Werks,” vol. VI., pp- 184-202,
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0,, 6, 05 being any uniform analytic functions of z without singularities in the finite
part of the z-plane, and «, 8 two unequal constants. The integral

0,(2)
[ U 0a(2) efbﬁd" dz
I 1 4

vanishes if L is a suitably chosen path.
For the integral
S T
- a—f3 dz dz/)

and vanishes if the expression in square brackets has the same value at the beginning
and the end of the path. A suitable path is, therefore, a “Doppelumlauf” round two
of the roots of 6,(z) = 0 if these roots are not all equal; the path may in special cases
reduce to a straight line.

§ 11. The special case of the hypergeometric function was considered by Jacosi,
who proved in the paper already quoted that if the real parts of y and p+1—vy are
positive,

JIF(—-m,p+m, Y, 2) F(—=n, p+n,y,2) 2" (1=2)Ydz =0 if m#n . (22).
. .

JAcosr proved further that, under the same conditions,

' 2 y—1 vy Ty n -DPa(p—y+n
[\ (=, ptn, 3, 2) o (1) clz—p+12n~H(H)(;Ii(z_l))il(ygonj;; ) (23).

An important special case of (22) is given by m = 0, in which case, under the same
conditions,

1
I F(—n, p+n,y,2)27(1=2)""7dz=0, unless n=0 . . . (24).
0

We are now in a position to investigate the expansion of an arbitrary uniform
analytic function in a series of hypergeometric functions.

SecrtoN IL.—HYPERGEOMETRIC FUNCTIONS.

§ 12. The hypergeometric function
F(a, B, 7y, x)
1s an analytic function of & for all values of x, with branch-points at
x=0,1, and .
If |«] <1, one of the branches of the function can be represented by the series

14 2B, (et ) BBrY) o g iy,
+1.'ym' 1.2.y.(y+1) @'t ...ad inf.

3 n2
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492 MR. H. A, WEBB ON THE CONVERGENCE OF

§ 13. The formula

‘a('y—ﬁ) (B—a+1)F (a+1, B—1, v, x)—=B(y—ea)(a—B+1)F(a—1, B+1, y, )

= (4—B) {2 (4= B'=1)+ 2Bty (1—a—=f)} F(m, By, 7) . . . (25)

may be easily verified.*
Let « be a negative integer; F («, B, y, ©) becomes a polynomial in w. Write
a=—n, a+B=p. We deduce from (25) the resultt

1 (p=1) T (y=p= D)W (y=1)p (e=2) F (0, . 3, ) F (0, p, 3, 2)
gy ) T r=p=2) T () (0 +2) (5=2) F (=1, 1,9, ) B (=1, p 1, 9, )

+...+-(_1)n A (p+n—=1) 11 (y=p—n—1)1I (y+n—1) (p+2n) (x—2)

I (n)

is equal to

(=1 I (p+n) . T(y—p—n—1) . 0 (y+20) rp, el
11 (n) p+2n+1 [F (= pta, y, 2) F(=n—1, p+u+1,y,x)

F(=n, p+n, y, 2) F(=n, p+n, y, x)

=B (=n, pt+n, y, ) F(—=n—=1, p+n+1,9,2)]. . . . . (26).

Assume that the real parts of y and (p+1—y) are positive. Multiply (26)
through by
@ L=z dz

(=) (1)
and integrate from z = 0 to z = 1. Making use of (22) and (24), we find after some
reduction that, when the real parts of y and (p+1—y) are positive,

%F(O, Poys ). F(I, v, p+1, %>

\

AR S T F<z 1, p+3, L
Syt (=h Ly, ) YL P E)

+(=1) y(y+1)...(y+n—1) L
(p+n)(p+n+1)..(p+2n-—-1)*

F(—n, p+n, v, x)

F<n+1, y+n, p+2n+1, %)

/

* It may be derived at once from formulee [1], [2], [3], [6], and [7], given by Gauss, ¢ Disquisitiones
generales circa seriem infinitam

»

1+ M R ST
1.y
¢ Werke,” vol. I11., pp. 125-162.

Reference will be made also to another memoir, ¢ Determinatio seriei nostra per eequationem differentialem
secundi ovdinis,” Gatss’ ¢ Werke,” vol. III., pp. 207-230.

T For the method of deduction, ¢f. WHITTAKER, ‘ Modern Analysis,” p. 228.
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INFINITE SERIES OF ANALYTIC FUNCTIONS. 493
is equal to
1 (y+1)...(y+n) 1 [1 .
- —1 n+1 ')’ Y Y { F —n—1 Y p
t—x+( ) (p+n+1)(p+n+2)..(p+2n+1)t—z (" (=n=L, prntl, y, )
F<n+1, y+n, p+2n+1,tl>
() (p=y+n+l) L g,
(p+2n+1)(p+2n+2) +** (=, pmn, v, @)
F<n+2, y+n+1, p+2n+3, tl>} R 21 )

Since both sides of the equation represent analytic functions for all values of y and
p, unless y or p+1 is a negative integer, the restriction that R (y) and R(p+1-y)
are positive may now be removed.

§ 14. From Theorem L., we find that when » is very large,

F(=n, p+n,y, x)
is approximately equal to

1

(_1>n'(p+n)((§:_—{_|—?)+1(),y+(fj2)% 1)%4(1 ) (p— 1)t (27_2,,_1){%?4 1+1\/x -—L} w. (28)

for all finite values of x; and

tnt1F<n+1 y+n, p+2n+1, —)

is approximately equal to
HED (= WD (L (1) BV Pty L L (29)

for all finite values of ¢.
The second term on the right side of (27), when n is large, is approximately

equal to

L/ \YATE) S \E@y—2pm)) —5
Loy <§> < ) {%(2x-1)+-;—\/x2-—w

t—x t t—1,

et 1)

X[ZJL 14+24/ 27— oc‘]”*“)

A—1+2¢—t |

and vanishes or becomes infinite when n increases indefinitely, according as

| 20— 1422 —w|=|2t— 142/ —t],
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494 MR. H. A. WEBB ON THE CONVERGENCE OF

that is, according as « lies within or without an ellipse passing through ¢, which has
the points 0 and 1 for foci.

We have the following result.

Theorem VI—If the point « is in the interior of the ellipse which passes through ¢
and has the points zero and unity for foci,

(=)

can be expanded in the series of hypergeometric polynomials
1 1
EF(O’ Y m)F(lj v, p+1, —t~>

_Y lywoq g AF(2 - l>
p+1t2F( 1, p+1, 1y, x)F<Z,yl—l,p—l 3, ; -

_|_(__]_)n y('y—l-l)...('y+n—1) 1

7 F(=n, ptn, y,
(p+n)(p+12,+1)_.'(2(),{_271_“1)”.;1 ( Vi p n ,y x)

F<n+1, y+n, p+2n+l, %>
+oadomf. o0 0 0 L N (1)

If 2 is outside the ellipse, the series is divergent.

If 2 is on the ellipse, and t—x is not zero, the sum of n terms of the series, when n
is large, oscillates in general between two finite limits. Hence when x is on the
ellipse the expansion fails.

§ 15. Multiply both sides of the last equation by ¢(¢)dt and integrate round a
simple contour enclosing the points ¢ = 0 and ¢ = 1 but no singularity of ¢(z).

Theorem VII.—Let ¢(z) be any analytic function which is regular at all points in
the interior of an ellipse C, whose foci are at the points

2=0 and z=1.

The ellipse is so large that its circumference passes through one (or more) of the
singularities of ¢(z). The curve is thus completely defined when ¢(z) is given.

Let p and y be any quantities, real or complex, subject only to the conditions that
the real parts of v and p—y-+1 are positive. |

Then ¢(z) can be expanded in the infinite series of polynomials

aOF(Oa D7 2)'{"051F(""1: ]H’L Y Z)

+a.F (=2, p+2, p, 2)+...+a,F(=n, p+n, y, 2)+.... . (31),
where

4y = (PEINIrn =D I(pn=1) (1) _poaio( o, |
= T () Byt 1o (A= 077 B s prtn, 3 ) (@)t (32)
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The series is convergent if z is inside C and divergent if z is outside C. Ifzis on C,
the series is in general oscillatory and the expansion fails.

Moreover, the expansion holds for unrestricted values of p and 7y, save that neither
p+1 nor y may be a negative integer, if we write

ay = (—=1)" y(y+1)...(y+n—1) 1

" (p+n)(p+n+1)..(p+2n—1)2m
jZ;ll;—lF<n+1,y+n,p+2n+1,—1—>¢(t)dt. L. (39),
C /

a form equivalent to (32) when the real parts of y and p—vy-+1 are positive ; C' being
a simple closed contour containing the points ¢=0 and ¢=1, but no singularity
of ¢ (2).
§ 16. The following is a generalisation of (21).
The integral
O+,1+,0—,1-) ~1 — -
j 31—(71————:)277 F(—n, p+tn,y, 2)dz
is equal to

F(n+1, —p—n-1,2-7, 1) ot (12 (=, by, 2) de . (34),

}»<0+,1+,o—,1~)
the equality holding for unrestricted values of n, p, v, and ¢, save that neither p+1
nor y may be a negative integer.

We deduce

Theorem VIII.—Let ¢ (z) be any function of z which is regular at all points in the
interior of an ellipse C whose foci are at the points z=0 and z=1. The ellipse passes
through one (or more) of the singularities of ¢ (z). The curve is thus completely
defined when ¢ (2) is given.

Further, let p, ¢, and y be any constant quantities whatever, real or complex, save
that neither p+1 nor y is a negative integer. Then ¢ (z) can be expanded in the
infinite series of hypergeometric functions

al (p, ¢, v, 2)+aF (p+1, g—1, v, 2)+...4a, F (p+n, g—n, y, 2)+... . (85),
where

p—g+20) I (y—q+n—1) T (p+n—1) g‘o‘“’ 1+, 0=,17)

g =
TG =D =) T (p—y+a)

Tt (L—g)Prey

(p+n, g—n, y, )b (t)dt.

The series is convergent if z is inside C, and divergent if z is outside C; if z is on C,
the series is in general oscillatory and the expansion fails.

§ 17. Expansions in Legendre functions can be deduced from expansions in
hypergeometric functions by an appropriate transformation. On account of the
special interest of Legendre functions, we give a list of the formulee obtained,
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*When

z

<1,

F(p+n, 1=p—n, 1—m, z) = 11 (—m). <'— [ >§m. P (1—22),

z—1,

RS
\

and the equality still holds when |z| > 1, it F (p+n, 1—p—mn, 1—m, z) be replaced by
the function derived from it by analytic continuation.

Theorem IX.—Let ¢(z) be any function of z which is regular at all points in the
interior of an ellipse C, whose foci are at the points z =1 and z = —1.

The ellipse is so large that its circumference passes through one (or more) of the
singularities of ¢(z).

The curve 1s thus completely defined when ¢(z) is given.
Let m and p be any constant quantities whatever, real or complex.

Then ¢(z) can be expanded in the infinite series of LEGENDRE'S associated functions

(<1“Z) [P (@) + Py (2) oo F PP () He] o o . (36),

A4z
where
o 1T —m+n 1+, —1+,1—, —1—) ].+t Jm ” ‘
a4, = —}(2p+2nt1) m——ngz e MM () P00 de.

The series is convergent if z is inside C and divergent if z is outside C. If 2z is on
C, the series is, in general, oscillatory and the expansion fails.

Theorem X.—If the point p is in the interior of the ellipse which passes through p,
and has the points p =1, = —1, for foci, and if m is any constant quantity what-
ever, real or complex,

(p—p)™"

can be expanded in the infinite series of LEGENDRE’S associated functions,

777,7T'l: M—l - B:__l>%1n m 22 m —m
o (Bt L R (1) Q™ () + 3P ()R p)
o+ 2+ )P () Q™)+ b o o o (87)

If  is outside the ellipse, the series is divergent. If wis on the ellipse, the series
is, in general, oscillatory and the expansion fails.

Theorem XI.—Let ¢(z) be any function which is regular at all points in the
interior of an ellipse C, whose foci are at the points z =1 and z = —1.

The ellipse is so large that its circumference passes through one (or more) of the
singularities of ¢(z). The curve is thus completely defined when ¢(z) is given.

Let m be any constant quantity, such that the real part of m lies between
1 and —1.

* HopsoN, “On a Type of Spherical Harmonics of unrestricted Degree, Order and Argument,” ¢ Phil.
Trans.,” 1896, Series A, vol. 187, p. 451 (5). The notation used by HopsoN, including the definitions of
the functions P, (u), Qu™ (1), will be adopted, :
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Then ¢(z) can be expanded® in the infinite series of LEGENDRE'S associated
functions

6m1ri<%i_§>im{aoPom(Z)+a1P1m(Z)+ oo +anan(z)+ see } . o . . (38))

where

o, = b(2n+1) ﬁﬁiﬁl% [ (Y pr@s@ae

The series is convergent if z is inside C, divergent if z is outside C, and, in general,
oscillatory if z is on C, in which case the expansion fails.

* The position of this result in the historical development of the subject is noteworthy. If m is a real
positive integer as well as n, P, () vanishes so long as n<m.
With the further restriction on ¢ (2) that (1+2)1"#" ¢ (2) vanishes when z= — 1, we find that

1 = 2\im 2
¢ (2) = gmm ( m) nz,m anPn™ (2),

where

weden ) (0 s

This result is given by HEINE (* Kugelfunctionen,’” 2nd edition, p. 252).
In his notation

f (#) denotes ( ﬁfym ¢ (2).
1 -2
If in the last equation m =0, we have the well-known expansion, valid within the ellipse C, in terms of
the simple Legendre functions,

b (2) =Py () + 0Py (2) + ... + 2, Ps () + ...,
where

tn=}(2n+ 1)j‘11>,,(t) & (t) dt

(WHITTAKER, ‘ Modern Analysis,” p. 230).

VOL. CCIV.—A. 38
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